
Presented at the 8th Annual Meeting of Particle Accelerator Society of Japan, Aug. 2011 (Paper ID: TUPS086) 1

STUDY OF SURFACE FIELD ENHANCEMENTS
DUE TO FINE STRUCTURES

Tetsuo ABE∗

High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Abstract

High-gradient accelerating structures are linchpins of
high-energy accelerators to search for new physics in parti-
cle physics. In this paper, local surface-field enhancements
at fine concave structures, which could deteriorate perfor-
mance of such accelerators, are numerically calculated with
three different methods, including floating random walk.

INTRODUCTION

High-gradient radio-frequency (RF) accelerating struc-
tures are linchpins of high-energy accelerators to search for
new physics in particle physics. However, fine surface de-
fects in the structures, such as burrs from machining and
undulations due to crystal structures, could increase sur-
face fields and/or surface heating, and trigger breakdown
of the accelerating structures, leading to deterioration of
accelerator performance.

As is well known, projection tips, or similar fine struc-
tures, can dramatically increase local surface fields. On the
other hand, how much is field enhancement at fine con-
cave structures? Such structures could be made at bonding
planes, e.g. of quadrant-type X-band accelerating struc-
tures for CLIC [1]. This is a problem presented in this
paper, and surface-field enhancement factors are numer-
ically calculated with three different methods: RF- and
electrostatic-field simulations based on the Finite Integra-
tion Technique (FIT; e.g. see [2]), and floating random
walk.

GEOMETRY OF CONCAVE STRUCTURE

Surface-field enhancements are calculated for a concave
structure, parametrizing it by three parameters: R, G, and
∆, as shown in Fig. 1. The value of R is fixed to be 50µm,
simulating the R = 50 µm round chamfer on the edges of
the bonding planes of the quadrant-type X-band accelerat-
ing structures for CLIC [1]. The values of G and ∆ are
floated in the following simulations.

The X-axis is always defined, as shown in Fig. 1, with
its origin located at the center of the gap.

In this study, there is only one material of a conductor,
which is treated as perfect electric conductor (PEC).
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METHOD1: FIT-BASED RF-FIELD
SIMULATION

Assuming X-band accelerating structures, a port mode
of TE10 with a cutoff frequency of 10 GHz is computed for
a rectangular waveguide with a size of a = 15 mm and
b = 1.0 mm, as shown in Fig.2, where there is a small
groove of the concave structure at the center of the E-plane.
Field enhancement factors are calculated as a ratio of the
maximum field strength around the round chamfer (Emax)
and the reference field strength at X = 0 on the E-plane in
the opposite side (Eref ), i.e. Emax/Eref .

For port mode computations, CST MICROWAVE STUDIO
(MWS) [3, 4] is used, which is based on the FIT, a general-
ized finite-difference scheme for the solution of Maxwell’s
equations. We adopt hexahedral meshing with an advanced
curved-boundary approximation [5], where a parameter on
the number of mesh lines per wavelength is increased to
300 from its default value of 10, leading to a mesh size of
about 100 µm at the points far from the groove. Further-
more, another meshing parameter on the automatic mesh
refinement at curved surfaces (RAPL) is increased to 5
from its default value of 2. Figure 3 shows how the meshing
changes as the parameter RAPL is increased. Figure 4-(a)
shows an example of the electric-field strength around the
round chamfer. As shown in Fig. 4-(b), the surface electric-
field strength (Esurf ) as a function of X is more continu-
ous with RAPL=5 than RAPL=2, and the maximum field
strengths are almost the same, so that we adopt this mesh-
ing with RAPL=5 in this study.

Figure 5-(a) shows computation results as functions of
G and ∆. There is at least 20% enhancement even though
there is no gap and ∆ = 0 for the R = 50µm round cham-

Figure 1: Parametrization of a concave structure. The gray
and white areas indicate PEC and vacuum regions, respec-
tively.
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Figure 2: Vacuum region of the rectangular waveguide with
a small groove at the center of the E-plane. The background
material is PEC.

Figure 3: Hexahedral meshing around the round chamfer
in the case of G = 0 and ∆ = 20µm by MWS.

fer. The electric field could be enhanced by 40% if the ∆
becomes around 25µm.

METHOD2: FIT-BASED STATIC-FIELD
SIMULATION

If the size of the fine structure is much smaller than
the wavelength of the RF field, local fields near the fine
structure can be calculated as static fields. In this sec-
tion, electrostatic fields are calculated by using CST EM
STUDIO (EMS) [3, 4], which is also based on the FIT, for
the geometry shown in Fig. 6, where the meshing condi-
tions are the same as in the previous section. The distance
and potential difference between the two plates are set to
be b = 1.0 mm and 1.0 V, respectively. Field enhance-
ment factors are calculated as a ratio of the maximum field
strength around the round chamfer (Emax) and 1000 V/m,
i.e. Emax/(1000V/m).

Figure 5-(b) shows computation results as functions of
G and ∆. There are very good agreements between the RF
(Figure 5-(a)) and electrostatic (Figure 5-(b)) computations
as expected.

METHOD3: FLOATING RANDOM WALK
(FRW)

While the above-mentioned two methods are based
on deterministic algorithms with space discretization, the
FRW method (e.g. see [6]) is a stochastic approach without
space discretization. It is based on the following formula to
calculate an electrostatic potential φ in the case of no true

(a) Distribution of the electric-field strength computed
with RAPL = 5.
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(b) Conductor surface (top) and the surface electric-field strength
as a function of X computed with a RAPL value of 2 (black) or 5
(red) (bottom).

Figure 4: Example of the results of the port-mode compu-
tations using MWS in the case of G = 0 and ∆ = 20 µm.

charge [7]:
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where Cl indicates a circle with a fixed radius of rl:

rl =
√

X2
l + Y 2

l , (4)

and the value of rl (l = 1, 2, · · · , N ) is always set to be the
minimum distance to the boundary with a known potential.
In the FRW method, a probabilistic interpretation is given
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(a) For RF fields computed by using MWS.
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(b) For electrostatic fields computed by using EMS.

Figure 5: Electric-field enhancement factors as functions
of G and ∆.

Figure 6: Two parallel PEC plates with an electric potential
difference of 1.0 V. A small groove of the concave structure
is made at the center of one plate. The background material
is vacuum.

Figure 7: Schematic diagram of FRW. If r4 < rmin, this
random walk is terminated, and the potential value at the
nearest boundary is used. S indicates a boundary with
known potentials.

to Eq. (1), and Eq. (3) is calculated by random walks. Fig-
ure 7 shows a schematic diagram of FRW as an example.
If rN is smaller than a certain value (rmin), φ(XN , YN ) is
set to be the potential value at the nearest boundary. In this
study, rmin is set to be 1 nm (= 10−9 m).

Letting φk be an estimate by the k-th single random
walk, and performing M random walks in total, we obtain
an estimate φ̄ and its error σ of the potential by M random
walks according to the following formula:

φ̄ =
1
M

M∑
k=1

φk , σ =
(Standard Deviation)√

M
. (5)

Advantages of the FRW method are:

1. No meshing, i.e. no space discretization,
2. Simple algorithm,
3. No large amount of memory in computers needed,
4. High parallelization efficiency since this is one of the

Monte Carlo methods, and
5. Higher accuracy with larger statistics of random

walks.

On the other hand, there is a disadvantage that larger
number of computations or operations are needed than in
the deterministic methods, such as finite-element, finite-
difference, and finite-integration techniques. This disad-
vantage can be overcome by adopting GPGPU (General-
purpose computing on graphics processing units) with
many cores, which is a rapidly-advancing field in computer
science. It should be noted that GPGPU is weak in compli-
cated algorithms.

In this study, a GPGPU board of NVIDIA Tesla C2070
with 448 cores is used, and a dedicated computer program
has been written in Fortran 2003 / CUDA Fortran [8] to
compute electrostatic potentials with the FRW method. To
generate pseudo random numbers, the Mersenne Twister
algorithm with a dynamic creation method [9, 10] is imple-
mented in this computer program.
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In order to obtain electric fields, potentials at a 0.5µm
distance from the conductor surface are computed with an
accuracy of 0.00018% using 4032 threads submitted to the
GPGPU board. Surface fields are calculated by taking a
difference between the computed potentials and 1.0 V di-
vided by 0.5µm, where the corresponding accuracy in elec-
tric fields is 0.35%. Typical number of random walks and
elapsed time to obtain the above accuracy are M = 200
million and 10 seconds, respectively. This computation
speed is about five times faster than the same computa-
tion with eight threads using dual CPU of quad-core Xeon
X5472 (3.0 GHz) (eight cores in total). It should be noted
that the computation speed can be made much faster if we
use a GPU cluster because the parallelization efficiency is
100% in principle.

Figure 8 shows examples of the computed surface fields,
and Fig. 9 shows computation results of the electric-field
enhancement factors. All in all, there are good agreements
between the results with the FRW method and EMS. How-
ever, the results with the FRW method show a few % higher
values than the results with EMS.

Benchmark test

In order to demonstrate the validity of the FRW method
and its implementation in this computer program, a geom-
etry including an infinitely sharp edge, as shown in Fig. 10,
is adopted as a benchmark. For the geometry, exact po-
tential values can be calculated according to the following
formula:

| ~E(X,Y )| =
∣∣∣∣dw

dz

∣∣∣∣ (6)

z =
b

π

(
ln

1 +
√

1 + e−(π/φ0)w

1 −
√

1 + e−(π/φ0)w

−2
√

1 + e−(π/φ0)w

)
+ ib (7)

where ~E(X,Y ) indicates a two-dimensional electrostatic
field vector, z = X + i Y , w = u + iφ(X,Y ), φ0 = 1.0 V,
and b = 1.0 mm. Eq. (7) is a z − w transformation, which
can be derived by using the Schwarz-Christoffel mapping
for the geometry shown in Fig. 10.

Figure 11 shows results of the computations by using
EMS and the FRW method. While the results with the FRW
method are perfect, the results with EMS show undershoot
toward the edge in the region of X . (mesh size). The
undershoot can be attributed to the meshing effects in EMS;
FRW is a mesh-free method.

CONCLUSIONS
Electric-field enhancements due to fine concave struc-

tures with the R = 50µm round chamfer have been com-
puted with the three different methods: the FIT-based RF-
field simulation by using MWS, the FIT-based static-field
simulation by using EMS, and the FRW (mesh-free and
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Figure 8: Conductor surfaces (top figures) and the surface
electric-field strengths as a function of X (bottom figures).
Each red point indicates a computation result using the
FRW method.

stochastic). There are agreements among the three meth-
ods within a few % accuracy, where the results by MWS and
EMS show a few % smaller values. It has been found that
there is at least 20% enhancement even with no gap and
∆ = 0, and the enhancement increases to 40% as the ∆
size increases to 25µm.

It has been demonstrated in this study that the FRW
method gives high-precision calculations of local fields,
and it is practical and promising because of its suitability
for GPGPU computing. It should be emphasized that this
FRW method is applicable to any structure. The next step is
to apply this FRW method to computations of surface-field
enhancements on conductor surfaces damaged by break-
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Figure 9: Electric-field enhancement factors as functions
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results by using the FRW method (EMS).
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Figure 10: Geometry for the benchmark test. The hatched
and white areas indicate PEC and vacuum regions, respec-
tively. There is an infinitely sharp edge at (X,Y ) = (0, b).
The minimum distance and potential difference between
the two PEC regions are set to be b = 1.0 mm and 1.0 V,
respectively.

down and/or discharge in accelerating structures, where
such surface profiles can be measured with laser-scanning
or atomic-force microscopes.
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Figure 11: Surface electric-field strengths at Y = b as
a function of X for the benchmark geometry shown in
Fig. 10. Near the infinitely sharp edge located at (X,Y ) =
(0, b), the mesh sizes in the Mesh A and B of the EMS com-
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